If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+15a+26=0
a = 1; b = 15; c = +26;
Δ = b2-4ac
Δ = 152-4·1·26
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-11}{2*1}=\frac{-26}{2} =-13 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+11}{2*1}=\frac{-4}{2} =-2 $
| -12=4(x-8) | | 3x+7=4x-(3+2x) | | 2a+a=7 | | N-1=13+5n | | -7n-4=2(n-8) | | 3/2a-4/3a=-10/3+8/3a | | 5(2x-4)=3(2x+1)-1 | | (4x+2)-(2x+1)=6 | | 3x-40°=x+30 | | 45/x=9/3 | | 4a=8/5 | | 5x-18=-43 | | 10n+27=7n+14 | | -5(x-8)=-45 | | 2b+11=4b+3 | | x+8=13-6x | | -5(3x-8)=-45= | | 2x+10=-x+1 | | x+12+x=180 | | 1/3(m+21)+2/3m=2 | | 3x-20=55. | | 2x^2+10+12x=0 | | -6x²+30x+84=0 | | x2-6x=10+3x | | 5/7x=84 | | 6x+19=2x+55 | | 2x+x=6-5+x | | 2x+(x+7)=16 | | 516−3p=0.66p+5 | | 3x14=35 | | 3x+0,4=1x+2.8 | | 516−3p=0.66666666666p+5 |